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Abstract—In vivo Wireless Nanosensor Networks (iWNSNs)
consist of communicating miniature devices with unprecedented
sensing and actuation capabilities, which are able to operate
inside the human body. iWNSNs are the basis of emerging
healthcare applications such as intra-body health-monitoring
and control of biological processes at sub-cellular level. Major
progress in the field of nanoelectronics, nanophotonics and
wireless communication is enabling the interconnection of the
nano-devices in iWNSNs. In this paper, the effect of single
biological cells and cell assemblies on the propagation of optical
wave for intra-body communications of nanosensors is analyt-
ically investigated in three distinct ways, namely, geometrical,
time-domain, and frequency-domain analyses. The analytical
channel model is validated by means of full-wave electromagnetic
simulations through a case study for Red Blood Cells (RBCs)
inside the blood plasma. The results show that RBCs perform
as optical micro-lenses that confine the radiated light on a focal
area, which agrees with recent experimental achievements. It is
also shown that changes in shape and size of the cells slightly
alter the channel impulse response. This study motivates the
development of new communication solutions for intra-body
nanoscale optical communication networks as well as new nano-
biosensing strategies able to identify diseases which cause cell
shape alterations.

Index Terms—Biological cells, biological effects of optical
radiation, communication channels, electromagnetic propagation
in nonhomogeneous media, optical communication, geometrical
optics.

I. INTRODUCTION

Major progress in the field of bio-photonics is enabling
the control and monitoring of biological processes through
the utilization of light. For instance, by incorporating light-
actuated/light-emitting proteins into cells, key biological pro-
cesses can be controlled and monitored in real time [2], [3].
One of the interesting characteristics of the optical signals
is their very small wavelength, which theoretically enables
precise temporal and spatial control and monitoring. Currently,
most of the existing studies rely only on traditional optical
sources and detectors, which, due to their size and capabil-
ities, limit the applications of light-mediated bio-interfaces.
Nanotechnology is providing the engineering community with
a new set of tools to create novel nanoscale devices with
unprecedented functionalities. These include, among others,
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plasmonic nano-lasers with sub-micrometric footprint [4],
plasmonic nano-antennas able to confine light in nanometric
structures [5], or single-photon detectors with unrivaled sensi-
tivity [6]. Plasmonic nano-lasers working in conjunction with
nano-antennas can serve as nano-actuators of light-controlled
processes. Similarly, nano-detectors enhanced with plasmonic
nano-antennas can act as nanosensors. As a results of all
these improvements, it is not beyond imagination that within
a few years we will see these emerging nanomachines in our
daily life with remarkable applications ranging from health-
care monitoring wearable devices and intra-body microfluidic
nanomachines to brain-machine interface implants [7], [8].

By means of communications, these nanomachines will be
able to autonomously communicate among themselves or with
a control/monitoring center to transmit their sensing informa-
tion, receive the controlling commands, and coordinate joint
actions when needed. The resulting iWNSNs enable smart
health-monitoring and drug-delivery systems, among many
others. Within several recently proposed wireless technologies
that could enable the communication between nanomachines,
the molecular and electromagnetic communications are the
leading ones. The molecular communication path has been
thoroughly investigated [9], [10]. This mechanism is natu-
rally used by biological cells to exchange information and
could be enabled by means of synthetic biology; however,
the very low achievable data rates severely limit the effi-
ciency of nanosensor networks [11]. From the electromagnetic
perspective, emerging plasmonic nanoantennas have recently
enabled the wireless communication among nano-devices at
very high frequencies, ranging from the Terahertz (THz)
band (0.10-10 THz) [12] to the infra-red and visible optical
range [5]. The propagation of THz-band waves inside the
human body is drastically impacted by the absorption of liquid
water molecules and causes internal vibrations into molecules,
which results in heat and could lead to photothermal tissue
damage [13]. Alternatively, the majority of existing nano-bio-
sensing technologies rely on the use of light due to the fact
that the molecular absorption of liquid water is minimal in the
optical window (between 400 THz and 750 THz) [14].

In this direction and in order to analyze the feasibility
of intra-body wireless optical communications, one of the
most important challenges is to understand the propagation
properties of light in biological scenarios. Traditional channel
models for light propagation in biological tissues [15-18]
cannot accurately describe the channel properties in nanoscale
scenarios because of several reasons. First of all, in intra-



body NanoScale Optical (iNSO) communications the wave-
length range of study is in the order of several hundreds of
nanometers; therefore, due to the relatively large particles -
compared to the wavelength-, and short range communication
distances, the macroscopic properties of different particles
cannot describe the details of propagation pattern of the light
in nanoscale. Furthermore, the radiated light from a nano-
antenna covers a much smaller area than that of the external
macroscopic laser; hence, the wave does not radiate through a
large enough number of cells to be dealt with as an isotropic
medium. In view of the aforementioned drawbacks, we have
studied the propagation pattern of the light in human blood
by analyzing the impact of single cells rather than a homoge-
neous material, and have developed a detailed channel model
for iNSO communications earlier in [1] and [19]. However,
the effect of the geometry changes on the channel impulse
response in the time domain and verification of the geometrical
model with the frequency and time domain analyses have not
been considered in the literature to this point.

In this paper, we analyze the impact of single biological
cells and cell assemblies on the propagation of optical wave
in three distinct ways. More specifically, first, due to the rather
large size of the biological cells compared to the wavelength,
we follow a geometrical approach to trace path loss and time
delay of each of the optical rays that encounter a biological
cell. A closed form channel impulse response on the focal
line is derived by aggregating all the rays while considering
the attenuation and delay of each of them. The model that
is proposed in the current work is a generic model which
can be applied to any type of biological cells. However, the
communication in the human blood is considered as a case
study to verify the analytical model and simulation results.
There are two main reasons to consider the communication
inside the human blood, namely, applications of the intra-
body communications in the health monitoring and disease
diagnosis that is mostly performed by means of blood test
as well as recent experimental results on light propagation
through Red Blood Cell (RBC) [20] that can be used as a
reliable reference to validate our analytical model and simula-
tion results. In this regard, We further apply the parameters
of RBC floating inside the blood plasma to evaluate our
analytical model. We show that after passing a single RBC,
all the optical rays will be focusing on the central line.
Following the geometrical approach, a comprehensive study
on the intra-body communication channel in the time domain
is given and the effect of the different sizes and shapes of
the cells on the channel impulse response is analyzed. Finally,
an analytical frequency domain channel model is presented
and the behavior of randomly positioned cells inside a blood
vessel is provided. We also validate all the aforementioned
channel model analyses by means of extensive full-wave
electromagnetic simulations for the case study of RBC inside
the blood plasma. The results prove that the RBCs perform as
optofluidic micro-lenses inside the human blood in terms of
confining the light that is being radiated through them on a
focal area right after the cell. In fact, this phenomenon also has
been recently achieved through experiments on interactions
of light and RBCs [20]. Moreover, simulations with different

shapes of RBCs are provided which shows that the changes
in the shape and size of the cells slightly alter the channel
impulse response which can be used as fingerprints of the
healthy and infected cells in identification of diseases.

This study conducts the development of practical communi-
cation strategies among autonomous in-vivo nano-biosensors
which can operate inside the human body in real time. Thanks
to the light focusing property of the RBCs which eases the
propagation of the light inside the human blood by reducing
the exponential path loss, and by utilizing simple and feasible
modulation/demodulation schemes and transmission/detection
methods, the optical wireless communication is a promising
technique for future iWNSNs specifficaly inside the human
blood vessel. Furthermore, new nano-biosensing strategies
can be developed as a way to provide faster, low-cost, and
more accurate disease diagnosis and treatment than traditional
technologies. As an specific example, disease identification
can be done by detecting the slight changes in the channel
impulse response, caused by (sub) cellular abnormalities which
may appear in terms of either the change in shape of the
blood cells (e.g. anemia, which causes the shape of the RBC
to change to a sickle or crescent shape) or the presence of
pathogens.

The remainder of the paper is organized as follows. In
Sec. II, we define the biological cell model for iWNSNs com-
munication channel model, and further discuss the interaction
of light and biological tissues. Sec. III contains a thorough
analysis on the propagation pattern of light in interaction
with a biological cell based on geometric optics. In Sec. IV,
we develop a time domain channel model and study the
channel impulse response based on Maxwell’s equations and
electromagnetic radiation of the light, while Sec. V discusses
the frequency domain characteristics of light propagation in
biological tissues. Moreover, extensive simulations are demon-
strated and verified with numerical results in Sec. III to Sec. V
for each of the aforementioned analyses. Finally, we conclude
the paper in Sec. VL.

II. SYSTEM MODEL AND ANALYSIS METHOD
A. Cell model

Different types of cells affect the propagation of light in
different ways. In this work, without loss of generality of
our model, we focus on light propagation in blood vessels.
Human blood is composed by erythrocytes (also known as
RBC), leukocytes (also known as white blood cells), and
thrombocytes or Platelets. Among all these, RBCs are the
largest (7 microns) and most abundant (45%) and, thus, govern
the propagation of light in blood. Furthermore, all the blood
cells are floating inside the blood plasma (55% of the blood)
which is essentially water (92%).

Therefore, in our scenario, we consider RBCs immersed in
plasma. Plasma is modeled as a lossy medium with macro-
scopic properties of the water (complex permittivity €4 in
Fig. 1) which mainly captures the effect of the medium on the
optical propagating wave. Each cell is modeled as a multi-
layered sphere, with the outer shell as the cell membrane,
filled with the cytoplasm and the nucleus (which is replaced by
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Fig. 1. Biological Cell Model.

hemoglobin (Hb) for the specific case of RBC). The spherical
cell is widely used in simulation and analytical researches [16—
18]. However, the shape of different cells are not necessarily
spherical, and the nucleus is not always at the center of it.
Nonetheless, due to the random positions and movement of
the cells in different layers of biological tissues (blood in this
specific case), the sphere shape can be adopted as a general
model that provides a good approximation for all types of cells
with different shapes. As depicted in Fig. 1, for a typical cell
we define the following layers:

« Innermost layer: Core/nucleus (Hb for RBC) with com-
plex permittivity €; and radius rq,

o Intermediate layer: Cell cytoplasm with complex permit-
tivity ez and radius ra,

o Outermost layer: Cell membrane (fat for RBC) with
complex permittivity es and radius r3.

Note that since the biological cells are not attracted to the
magnetic fields, their magnetic susceptibility is very close to
zero, i.e., xm = 0. Hence, the permeability of the cells and
the medium, which is defined as p = popr = po(xm + 1),
can be considered to be equal to the permeability of free space
(vacuum), pp. Therefore, the corresponding wavenumbers k1,
ka, ks, and k4 are defined with the permittivity of different
layers of the RBC and medium respectively. It is relevant to
note that for the specific example of RBC, although a real
healthy RBC has a biconcave shape, the proposed spherical
cell model provides tractable simulations and closed-form
analytical results while focusing on more important parameters
of the intra-body optical channel, such as nanosclae characteri-
zation of each type of cells for short range communications. In
addition, to shed some light on the fact that the sphere model
is a good enough approximation of the real RBC, a thorough
discussion on the effect of the cell shape on the propagation of
the wave besides extensive simulations by adopting different
geometries for the RBC are given in Sec. III and Sec. IV.

B. Light and Biological Tissues Interactions

The radiation of the light in a medium is mainly affected by
reflection, refraction, diffraction, and scattering. The diffrac-
tion and scattering happen when the wavelength of the incident
light is comparable to the size of the particle, while the

refraction and reflection are related to the intrinsic properties
of the materials and are studied in geometric optics.

1) Diffraction: Diffraction occurs when the light encoun-
ters a very small obstacle (on an edge or a material with
a coarse surface) or passes through a tiny aperture. Having
in mind that the diameter of a biological cell in the human
body is in the range of 5-100pum, it can be easily seen
that the circumference of a circular cross section of even the
smallest cell would be around 15um, which is much bigger
than our wavelength of interest (600 nm). Hence, the effect of
diffraction is negligible in our analysis of shining light through
a single smooth shaped cell in a homogeneous medium, i.e.,
the blood plasma.

2) Scattering: Similarly, for the scattering there are three
different major theories to analyze the way that the wave
deviates from a straight trajectory based on the size of the
particle that it encounters. A dimensionless size parameter is
defined by the ratio of the characteristic particle diameter to
the wavelength as follows:

_wD
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where D is the diameter of the particle, A represents the
wavelength in vacuum and n, is the real part of the refractive
index of the medium. Based on the value of the size parameter
X, the scattering model is categorized in three groups, namely,
Rayleigh scattering for xy < 1, Mie scattering for xy =~ 1,
and geometric scattering for y > 1. Where for the latest
one, different references suggest different thresholds on how
bigger should be the particle for the geometric optics theory
to be valid. This range starts from x > 10 for using Ray
Tracing theory as a rough approximation to the solution of
Maxwell equations specially when there is no diffraction, up
to x > 100 which is a very strict threshold for certain studies
such as Optical Levitation [21].

In case of the propagation of light inside the human blood,
with normal and healthy RBCs, the size parameter is around
x = 49 for a wavelength of 600 nm and refractive index of
n, = 1.33 for the blood plasma. Although even when y = 50,
the Mie theory is still valid and the most accurate known
solution, but the results of the geometric approximation is
close enough to that of the Mie theory. Moreover, the ultimate
goal of the present work is to find a valid channel model for the
iNSO communication inside the human body where most of
the cells are much larger than the studied RBC. In addition, we
consider the scattering caused by the smaller particles inside
the blood plasma as a scattering loss coefficient .., besides
the extinction (absorption) coefficient pqp¢ for a homogeneous
medium to obtain a more accurate model.

3) Refraction: While diffraction and scattering do not par-
ticipate significantly in the propagation of the light as passing
through micrometer-scale cells, refraction and reflection play
the main role in the propagation pattern. Refraction of the
light in absorbing materials is described by using the refractive
index which is a complex-valued number. The real part of
the refractive index accounts for the refraction, while the
imaginary part deals with the absorption and is sometimes
referred to as extinction coefficient.

(1)



For our specific case study of communication inside the
human blood, Table I summarizes the real and imaginary
parts of the refractive index for different layers of a RBC
and the blood plasma for a range of wavelengths [14], [22],
[23]. The refractive index of a material for electromagnetic
radiation is equal to n(w) = /pr(w)er(w) which depends
on the frequency w or equivalently the wavelength A. Here ¢,
is the relative permittivity, and p, is the relative permeability
of the material. While the real and imaginary parts of the
refractive index are used in Sec. III for geometric optics
analysis in Fresnel equations and Snell’s law, the permittivity
and permeability are useful in Maxwell’s equations and deal
with the electromagnetic radiation of the waves that are used
in time and frequency domain analyses in Sec. IV and Sec. V
respectively.

TABLE I
REFRACTIVE INDEX VS WAVELENGTH.
| cytoplasm (water) fat Hb
[X@m) | ne(w) | na@) | no(w) | na(w) | npw) | ni(w)
450 1.34 1.02e-9 1.46 2.29e-7 1.43 1.21e-3
500 1.33 1.00e-9 1.46 7.55-8 1.42 4.45e-4
550 1.33 1.96e-9 1.46 3.3%e-8 1.42 1.01e-3
600 1.33 1.08e-8 1.46 2.22e-8 1.41 8.84e-5
650 1.33 1.64e-8 1.46 2.44e-8 1.41 1.02e-5
700 1.33 3.34e-8 1.46 1.80e-8 1.41 8.63e-6
750 1.33 1.56e-7 1.46 5.83e-8 1.41 1.66e-5
800 1.33 1.25e-7 1.46 2.55e-8 1.41 2.78e-5
850 1.33 2.94e-7 1.46 4.30e-8 1.41 3.84e-5
900 1.33 4.86e-7 1.46 3.31e7 1.41 4.59-5
950 1.33 2.90e-6 1.46 2.98e-7 1.41 4.87e-5

Since the biological tissues are non-magnetic at the op-
tical frequencies, the value of the relative permeability, .,
is considered to be equal to one (as explained earlier in
Sec. II-A). Therefore the real and imaginary parts of the
refractive index and the relative permittivity are related to each
other as follows:

err(w) = n2(w) — n2(w),  ens(w) = 2np(w)ns(w), (@)

where €, ,.(w) and €, ;(w) represent the real and imaginary
parts of the relative permittivity respectively, while n,(w), and
n;(w) are the real and imaginary parts of the refractive index,
and n(w) = n,(w) — jni(w).

4) Reflection: When light passes from one medium to
another with two different refractive indexes, both reflection
and refraction may occur. The Fresnel’s equations describe
what portion of the light is reflected and what portion is
refracted (transmitted). In case of communication inside the
human blood, the fat tissue which is the outermost layer of a
RBC causes the backscattered light by reflecting back a part of
the incident light. The reflection does not play a significant role
to form the main impulse response of the channel at any point
after the cell. The received signal after a single cell mainly
consists of the refracted and transmitted rays. However, in the
case of having multiple cells the reflected rays of the light from
the adjacent cells result in receiving the delayed versions of
the original signal which causes the multi-path. We consider
this effect as an adjustment multiplier in the channel impulse
response analysis later in Sec. III. The closed-form analysis
of the reflected rays is out of the scope of the present paper.
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Fig. 2. Effect of the Hb as a spherical lens.

Here we are mostly interested in the forward scattered wave to
find a propagation pattern for a single cell that can be utilized
to form a comprehensive channel model consisting of many
cells of different types. A thorough geometrical analysis on the
refracted (transmitted) light is given in Sec. III to calculate the
transmitted signal over the focal line after the cell. A closed-
form solution for the backscattered wave can be found by
following the same approach that has been explained in Sec. III
for the forward scattered light.

III. GEOMETRICAL ANALYSIS FOR LIGHT PROPAGATION
THROUGH BIOLOGICAL CELLS

Geometrical analysis of the light propagation, which is also
known as Ray Optics, is the limit of Maxwell’s equations
when the wavelength is small comparing to the size of the
particles [24]. As mentioned earlier, geometric analysis is valid
for the size of the biological cells and is much tractable to
obtain a closed form solution for the propagation pattern.

Fig. 2 shows the the trace of a ray while passing through a
sphere with a different refractive index. Due to the symmetry
in the geometry we know that all rays of the incoming light
(considered to be a plane wave) will be focused on the central
line that is coming out from the cell. For this reason we are
mostly interested to find the impulse response of a single cell
on this specific focal line. By considering a linear channel,
we know that if a single pulse is being transmitted from
the antenna, we will receive multiple versions of the same
pulse spread in time due to different paths that the light rays
go through. Therefore, the impulse response of the channel
includes different delayed pulses (and hence a phase shift)
from all the incoming rays of light. To find the impulse
response at a point on the focal line, the following have to
be calculated:

« The location of the focal point on the central line (r- f(a)
in Fig. 2);

« Path loss of each of the rays that pass the focal point, and
the intensity and direction of the received signal: Ep;



o Time (or the delay) between the transmitted and each of
the received rays at that point: 7.

As it can be seen in Fig. 2, there is a main ray perpendicular
to the surface which passes through the center of the cell
without any refractions, E'7'". This main ray further comes
out of the cell on the other side over the entire focal line. In
addition to that, there are other rays of light that encounter
refraction and pass through the cell and eventually cross the
focal line at a certain point (r- f(«) from the center of the cell),
Elf,r. We call these rays the secondary (focusing) rays due to
the fact that all the rays with the same distance from the central
line focus at the same point on the focal line. A complete trace
of a single secondary ray is shown in Fig. 2, which is at a
distance d, from the central line. It can be easily seen that if
we cover all the rays that are corresponded to 0 < o < 1 -or
the upper half of the cell-, then by taking the integral of the
received signal over 6, which is the angle between the plane
of incident and the z axis in spherical coordinates, we can
find the complete answer at a point on the focal line.

When a trace of light passes through a layer with a different
refractive index and goes further through the same medium,
the angle of the output ray is the same as the input one, and
it only shifts proportionally to the thickness of the layer in
between. Therefore, since we consider the refractive index
of the blood plasma and the cell cytoplasm to be the same,
so the effect of the thin fat layer (in the scale of 0.01 of
the wavelength) of the cell in shifting the ray of the light is
negligible. Also the absorption and the time delay due to this
thin layer is insignificant and can be ignored in calculation of
the channel impulse response.

A. Focus Point

To find the focus point in Fig. 2, we define the normalized
distance parameter « as the ratio of d,. to r, where d,. is the
distance between the ray and the central axis of the sphere
(main ray), and r is the radius of the sphere. Then, f(a) can
be calculated as follows (see Appendix A):

fla) = 2

3)

sin [2 (arcsin(a) — arcsin( Z; oz))} 7

where r - f(«) is the distance of the focal point from the
center of the cell for all the incident rays of light in space
with normalized distance parameter a.

It can be observed that the value of the f(«) only depends
on the ratio between the refractive indeces of the media, i.e.,
Z: i , and regardless of the size of the cell, the ratio of the focus
point to the radius of the cell remains unchanged. Also, the
value of « is always between 0 and 1 for the plane optical wave
source that is emitting through the sphere, and is polarized
along x axis. The focus point always lies in between the upper
and lower bounds of the function f(«) multiplied by the radius
of the cell r. Referring to Appendix A, it can be observed that
the lower (f;) and upper (f,,) bounds of the function f(«) can
be calculated as follows:

2
N2
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Fig. 3. f(a) vs a for n, 1 = 1.33 and n, 2 = 1.41.
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Fig. 3 shows the range of the function f(«a) for a € (0,1),
ny1 = 1.33 (plasma) and n, o = 1.41 (Hb). As it can be seen
in this figure, almost 85% of the focal line consists of the
focusing rays with o < 0.5, which corresponds to the 25%
outermost area of the cell. Interestingly the Brewster angle -in
which the boundary loss is minimal (see Sec. III-C)- happens
also within this interval. Therefore, most of the energy of the
incident light will be focused in the portion of the focal line
which is in a distance of - f(1) to r - f(0.5) form the center
of the cell. After this interval, the light is mostly following the
exponential loss due to the molecular absorption and scattering
of the media (see Sec. III-C).

It is relevant to note that in the real case of RBC, there
will be some reflected rays back into the cell, also the total
internal reflections happen inside the cell due to the difference
between the refractive indices of fat, Hb and cytoplasm layers.
However, the amount of the reflected signal is very insignifi-
cant. According to the Fresnel’s equation (explained in details
later in Sec. III-C and equation (15)), for the wavelength of
450nm, only 0.2% of the main ray will be reflected in the
boundary of fat and cytoplasm. This can be ignored in the
calculation of path loss and will not have a major impact on
the propagation of the light after the cell.

B. Time Delay for Each Ray of the Light

The time delay for the main ray at the focal line can be
calculated by adding all the partial times that takes for the
light to pass through different parts of the path in different
media, and is given by:

1
Tmr = E(lonr,l + haneg + ligne 1), (6)

where 7,,, represents the delay for the main ray at a point
on the focal line, c is the speed of light in vacuum, [y is the
distance between the source and the cell boundary, l;; = 2r,



and li2 = 7+ (f(a) —1). The delay for an arbitrary secondary
ray is given by:

1
Tir = E(Eoﬂm + la1nr 1 + laang 2 + lasng 1), (7)

where 7y, represents the delay for an arbitrary secondary
(focusing) ray at a point on the focal line. And l2;, l22, and
l23 are given as follows by using the Sine law:

lo = 'r(l — cos(ﬂg)), (8)
[ sin(26;)
l22 = ‘"( sin(y) ) ©)

log = r(w) (10)

sin(26; — 26,.)
Since #; and 6, can be calculated from «, it can be seen
that the time delay also only depends on the real part of the
refractive index, the parameter v, and the cell radius 7.

C. Path Loss and the Light Intensity on the Focal Line

To find the intensity of the light at a point on the focal line,
we calculate the path loss of all the rays that are passing this
line. By aggregating all the rays that pass the same point and
including the delay for each ray form Sec. III-B, we will be
able to find the channel impulse response at the desired point.

There are three different losses that have to be considered,
namely, the molecular absorption loss £,;,, the scattering loss
Lgcq, and the boundary loss Lpoung. Due to the fact that we
are considering a plane wave as the emitting light source, there
will be no spreading loss caused by the antenna propagation
pattern. Note that in the case of using a directional or omni
light source the spreading loss also has to be considered. The
molecular absorption loss in different media according to the
Beer-Lambert law [25] is given by Lgpe = e HMabsl where [
is the distance that the wave passes, pqps is the absorption
coefficient of the medium and can be calculated from the
imaginary part of the refractive index as follows:

dan;(w)

= 11
Habs A\ (1

The attenuation due to the scattering can also be represented
as an exponential loss Lgen = e Haeal  where [sea 1S the
scattering coefficient of the medium and is given by pg., =
NQgcaog, where N is the particle concentration, o4 is the
geometric cross section of the particles, and Q.. represents
the scattering efficiency of the particles and is equal to [26]:

8 4 n?(w) — 112

Qoca = 3X Re(nz(w) + 2) )

Note that x is the size parameter of the particles with the
definition that has been given in Sec. II-B2.

Finally, the Fresnel’s equations explain the attenuation of the
refracted ray when the light moves from a medium to another
with a different refractive index. According to the Fresnel’s
law, part of the light is refracted and part of it is reflected
at the boundary between the media. We define Lyouna as the
boundary attenuation, and as it can be seen in Fig. 2, this
attenuation happens twice. Once when the light enters the
sphere and once when it moves out. The behavior depends

(12)

Plane of
Incident

Fig. 4. Polarization of the light wave for different planes of incident with
different # ranging from 0 to 2.

on the polarization of the incident ray, which can be separated
into two cases of s- and p-polarized. R, and R, are defined
as the reflectance of the s- and p-polarized lights respectively,
and are given as follows for the ingoing light:

o nl,,rooswg) — nz,rcos(ﬂr)

R = ny rcos(0;) + na rcos(fy)| ° 13
_|na,rcos(br) — ng,reos(6s)

By = ny rcos(6r) + na rcos(6;)| a4

where R,; and Rp; are the reflectance of the s- and p-
polarized ingoing lights respectively (Fig. 4). Following the
same type of equations, one can find the reflectance of the
outgoing lights named R, , and R, , for the s- and p-polarized
waves respectively. The transmittance of the light T/, ;/, is
given as T/pi/0 = 1 — Rgypi/0- In the special case of the
main ray where 6; = 6, = 0, = 0, the reflectance is given by:
2

Rmr — Ny —N2r (]5)
nir+ N2y
Hence the boundary loss for the main ray is given by:
bouna = (T™")?, (16)

where T™" is the transmittance of the main ray and is equal
to 1 — R™". The boundary loss of a secondary ray which
forms a plane of incident (containing the incident, reflected
and refracted rays) and has the angle € with the = axis, is
given by:

f 1 p— f 1 p—
Liguna = TeiTe0:  Lyguna = Tp.iTp.o, a7
where £/™ and £J™P  are the boundary losses for the s-

and p-polarized parts of a secondary ray respectively.

Fig. 4 shows the cross section of the sphere cell on the zy
plane. Note that the polarization of the wave is along the =
axis and the direction of the propagation is along z axis. We
solve the problem for an arbitrary secondary ray in a plane
of incident and then integrate the results over all the planes
of incidents by covering # from zero to 2w, where 6 is the
angle between the plane of incident and the = axis in spherical



coordinates (see Appendix B). The aggregated field coming
from the secondary rays with parameter « is derived as (see
Appendix B):

Elr(a) = W‘EO’ (LI Pcos() + LIT%Va,,  (18)
where Eo is the incoming ray shown in Fig. 2, a, is the unit
vector in the direction of x axis, and £/™? and £/"* represent
the path loss that every p- and s-polarized secondary (focus-
ing) ray faces in its path to the focal point and are equal to
Eabsﬁsmﬁbfgﬁl , and Eabsﬁscaﬁl{gﬁ ;4 respectively. Following
the same approach the received field coming through the main
ray over the focal line can be also given as:

g =|Bo| £ (19)
where £™" is the path loss that the main ray faces in its path
to a point on the focal line.

Note that E is initially considered to be polarized along
the x axis and hence propagating through z direction. From
equations (18) and (19), it can be seen that interestingly the
polarization of the received field on the focal line is also along
the x axis, and hence propagating through z. The polarization
of the main ray will remain the same while passing through
the cell since it is inline with the central line of the cell and
the plane of incident. However, for the secondary rays, as
mentioned earlier, each ray has two distinct and separate s-
and p-polarized parts for every plane of incident with a dif-
ferent 6. According to Fresnel’s equations, rays with different
polarizations will face different reflectance and transmittance.
Therefore, the polarization of each of the rays will be changed
while inside the cell. Once the rays move out of the cell and
pass the boundary for the second time, their polarization will
be changed again with respect to 6, but still not the same as
before entering the cell. Although, interestingly, when they
aggregate at a focal point, all the light rays that are polarized
along y and z axes will be canceled out with each other and
the resulting field will be polarized along x axis.

Now that we have all the information for the path loss and
delay, the channel impulse response on the focal line between
the points f; and f,, can be given as:

ejwrf,«> ,

(20)
where (r) is the cell-size gain factor which is a function
of the radius of the cell -the larger the cell, the bigger the
surface of the cell that is being exposed to the incoming light,
and hence the more energy will be focused at the focal line-,
Gmp is the multi-path gain caused by the reflected rays from
adjacent cells, which can be estimated by means of extensive
simulations and depends on different densities and distribution
of the cells in the medium, d is the total distance between the
light source and the point on the focal line and is considered
to belong to the interval d € lp + [r(1 + fi) r(1 + fu)].
for the equation to be valid. It can be observed that for a
given [y, the value of « can be calculated from d. Note that
E and 7 are functions of frequency f and d (or equivalently
«), and we consider the normalized channel impulse response

HU @) =21y - (| B
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for which ’E}’ is assumed to be equal to one. Furthermore,
there is no time difference between the secondary rays with
the same angle of incident ; or equivalently «, since they
pass through identical distances. Therefore, we can do the
integration without considering the time, and then we will
add the time delay for the final expression of H(f,d) which
contains both the main and secondary rays that are received
with different time delays.

IV. TIME DOMAIN ANALYSIS
A. Excitation Pulse Source

For the time domain analysis, we consider an electric point
dipole antenna at the distance d,. from center of the cell (as
shown in Fig. 1), with the dipole current moment direction n,,
and magnitude p as follows:

n, = d,, p = pulse(t — 50), (21

where a, represents the unit vector in the direction of x
axis, and since the current applied to the dipole antenna and
hence the E-field is along z axis, therefore the direction of
propagation is through the z axis. Furthermore, the function
pulse(t) is defined as the first derivative of a Gaussian pulse
as follows:

= — 202

pulse(t) Tong? e , (22)
where ag is the peak amplitude of the Gaussian pulse, and o
represents the standard deviation or the Gaussian RMS width.

To find the channel impulse response for the whole fre-
quency spectrum, we need an ideal Dirac delta function
d(t) as the transmitting pulse. However, the Dirac function
is feasible neither for real experiments nor for simulation
software. In addition, we are only interested in the channel
response for a certain frequency band which is so called the
optical window. Therefore, we use the femtosecond-long pulse
in (22) as the excitation for the dipole antenna. Moreover,
femtosecond-long pulse-based modulation, which also uses the
first derivative of a Gaussian pulse, has been recently proposed
as a promising modulation for communications within the THz
band [27]. This modulation method can be used for iNSO
communications as well, with the modification of o and hence
the central frequency of the pulse in the frequency domain.

If we take the Fourier transform of (22), we will have the
frequency domain representation of the pulse as following:

aot _t?

. _@rfo)?
Pulse(f) = ap(j2rfle” " 2
Now by taking the first derivative of Pulse(f) with respect
to f, and putting it equal to zero, we can find the maximum
frequency of the pulse in the frequency domain as follows:

far =

2mo’

(23)

(24)

As it can be seen in (24), by choosing the appropriate value
for the Gaussian pulse RMS width o, the maximum frequency
can be set to a desired value. Fig. 5 depicts both the time
and frequency representation of the femtosecond-long gaussian
pulse where ag = 10725, and o = 1/ [fs], and hence fy; =
500 [THz].
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Fig. 5. Gaussian femtosecond-long pulse in time and frequency domains.

B. Channel Impulse Response

To obtain the channel model (channel impulse response)
in the time domain, we define the transmitted signal
(femtosecond-long pulse in Sec. IV-A) as E;, at a point before
the cell, and the received signal E.; at a point after the cell. By
dividing the Fourier transform of the received pulse F(E,.) by
the Fourier transform of the transmitted pulse JF(E;), we can
obtain the channel response in the frequency domain H( f, d).
Taking the inverse Fourier transform of H ( f, d), we can obtain
the channel impulse response h(¢,d) as follows:

. _y [ F (Ere(t,d))

h(t,d) =F ' (H(f,d)) =F F (But, d))) ., (29
where d is the distance between the antenna and the receiver
point. We use Finite Element Method (FEM) to simulate the
light propagation through the RBC in time domain which
solves Maxwell’s equations with potential formulation in time
domain as follows:

OA 3] oA
_]. JES— —_— =
V x pr 7 (V x A) + pooe e + po 5 (EDE,- ) 0, (26)

where A is the magnetic potential vector. pg and ep are the
free-space permeability and permittivity respectively, and o,
is the electrical conductivity of the material. The magnetic
potential vector A and the electric field E are related to each
other with the following equation:

OA
ot’
where @ is the scalar electric potential. As explained in
Sec. IV-A, the peak of the femto-second Gaussian pulse in
the frequency domain fps can be tuned through the standard
deviation o, hence the relative permittivity e,(w) of the
medium and cell layers can be calculated from equation (2)
and Table I accordingly. This way, the impulse response of the
channel given in (25) is valid for the specific frequency fas.

COMSOL Multiphysics [28] is utilized to perform the FEM
simulations in time domain. Despite the simulation model
is generic and can be utilized for any type of biological
cells and medium, we particularize it for the specific case
of two nanosensors communicating inside the blood vessel
as explained in Sec. II-A. The RBC follows the cell model
explained in Sec. II-A with the three aforementioned layers.
The radius of the cell is considered to be 0.675um and the
antenna is placed 2.7 um far from the cell center. Since the
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Fig. 6. Electric field at two times before and after passing a fixed distance
in two scenarios of (a) no cell and (b) having a single RBC in between.

propagation medium is dispersive, with different frequency,
the relative permittivity are different for cytoplasm, fat, and
Hb. The detailed wavelength and corresponding permittivity
are provided in Table I. The antenna is considered to be a
unit dipole, i.e., Ipl = 1, where I is the input current and [
is the antenna length. The cell is located inside the medium
containing of plasma which is enclosed by a perfect matched
layer (PML) and surrounded by a scattering boundary condi-
tion. The PML is utilized to mimic the infinite environment
and its thickness is set to half wavelength. The simulation in
Fig. 6 is conducted with wavelength 450 nm. This figure shows
the electric field, emitted from the point dipole antenna, at two
times before and after passing a fixed distance in two scenarios
of (a) no cell and (b) having a single RBC in between. As it
can be seen in the figure, there is a small delay (fraction of a
femto second) in the received pulse after the RBC. This delay,
At, can be explained with the difference of the speed of light
in media with different refractive indices as discussed earlier
in Sec. III-B.
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Fig. 7. Channel impulse response for with and without RBC scenarios.



Fig. 7 shows the channel impulse response for both of
the aforementioned scenarios. The impulse response has been
calculated by exploiting equation (25) at a fixed distance after
the cell. The impulse delay, At, of the two scenarios can be
seen in this figure as well. Moreover, the impulse response
of the scenario with the cell in between, has a second smaller
impulse which is A7 delayed from the main one. This happens
due to the multi-path reception of the signal through the main
and focusing rays that have been discussed in Sec. III. It is also
interesting to note that the main impulse of with/cell scenario
shows a higher value than without/cell. This phenomenon can
also be explained with the focusing nature of the RBCs. By
filtering the ripples before and after the main impulses in
Fig. 7, which is mostly due to the backscattered field form the
boundaries of the simulation, the channel impulse response for
the with/cell scenario can be simplified as follows:

h(t) =y10(t — (to + At)) +720(t — (to + At + A7)), (28)

where t( is the propagation delay of the wave from antenna
to the receiver point without the cell in between, v; and -
are the gain of the main impulse response and the multi-path
reception respectively as shown in Fig. 7.

It is relevant to note that both the shape and the orientation
of the cell (specially when not symmetric, i.e., not sphere
shape) play roles in the propagation pattern of the light in
terms of changing the focusing property and the angle of
the outgoing focal line after the RBCs. Fig. 8 depicts the
received electric field and the channel impulse responses for
two different shapes of the cells, ellipse on the top row (as an
example of infected RBC) and biconcave on the bottom row
(for the healthy RBC). As it can be seen in the figure, the
intensity and delay of the channel impulse response changes
with different shapes and different orientations. The shown
channel impulse responses will not only guide the development
of practical communication strategies among nanosensors,
but also can be used as fingerprints that enable new nano-
biosensing strategies to identify diseases by detecting the slight
changes in the channel impulse response, caused by either
the change in shape of the blood cells or the presence of
pathogens. For the specific case of RBC in blood, the focusing
property preserves even for the real biconcave shape with
different orientations as proven experimentally in [19]. It is
relevant to note that the focusing property is caused by the
Hb inside the cell which is not necessarily shaped like the
cell outline. Moreover, the biconcave shape can be estimated
as two adjacent spheres containing Hb which furthermore can
be utilized as an analytical model for the real RBC shape to
find the closed-form solution of the wave propagation after the
RBC.

As mentioned earlier, the main focus of the present paper is
the communication channel modeling in biological tissues. In
this regard, the proposed channel model can be utilized and
adjusted for any types and shapes of the cells as discussed
in Sec. III-C and equation 20. It is relevant to note that a
healthy RBC has a biconcave shape. However, the shape of
the RBCs might be changing due to various types of disease,
e.g., sickle-cell anemia and spur cell anemia (Acanthocyte),
in which the shape of the RBCs will change to a sickle

shape or a many-pointed spike-like star respectively. These
differences in the shapes, as shown in Fig. 8, will cause
small changes in the channel impulse response that can be
utilized as fingerprints to diagnose diseases (which is out of
the scope of the current paper). We emphasize here again that
these small changes, although can be detected to diagnose
diseases, will not change the characteristics of the channel
for the communication purposes.

Moreover, it can be seen that the intensity of the electric
field is much higher in the case that the cells are aligned
in parallel with the direction of the light propagation. This
happens because of the parabolic shape inside the ellipse or
biconcave cells. However, as mentioned earlier the sphere can
be used as a general model for communication purposes with
a good approximation for all types of cells with different
shapes due to the random positions and movement of the cells
in different layers of biological tissues. This approximation
is accurate enough to model the intra-body communication
channel in terms of analyzing the channel impulse response
and calculating the path loss for the communication purposes.
As it can be seen in Fig. 6 and Fig. 8, the main impulse peak of
a sphere shaped cell is an average of the ellipse or biconcave
with different angles.

V. FREQUENCY DOMAIN ANALYSIS

A. Excitation Source in Frequency Domain

For the frequency domain analysis, we consider two kinds
of EM wave sources, namely, an electric point dipole antenna
and a plane wave excitation. For the point dipole antenna, we
utilize the same point source as in the time domain analysis
with the following parameters:

n, = d,, p = agcos(27 fet). (29)
As opposed to the time domain analysis in which we define a
femtosecond-long Gaussian pulse, here we have a pure infinite
sinusoidal wave for each central frequency of interest f..
If we choose f. = fas, then the same values of relative
permittivity can be used for both the time and frequency
domain analyses. The point source is used to find the channel
model in the frequency domain and compare the results with
the time domain analysis.

We also use a plane wave excitation to validate the Geomet-
rical channel model. For the plane wave we have the following
equation for the electric field as shown in Fig. 2:

—
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(30)

where kg is the free-space wavenumber. As it has been
mentioned earlier, the direction of the E vector is along the z
axis which means that the electric wave oscillates over the x
axis, and as a result the plane wave propagates through the z
direction. It is worthy of note that even when we are using a
dipole antenna, the propagating wave can be considered as a
plane wave with good approximation if the cell is far enough
(at least two times of the wavelength) from the source.
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B. Channel Model in Frequency Domain

The electric field is calculated all over the space by finding
the solution to the following Maxwell equation for different
layers of the RBC and the medium by utilizing FEM simula-
tions:

V x p; YV x E) — k2(er — 22¢)E = 0.

Wep

(3D

The results of the FEM simulations for a single RBC can be
found in Fig. 9. The simulations has been done in 3D and the
results are shown on the zz cut-plane. A point dipole excitation
source is utilized at A = 450nm. The RBC layers follow the
cell model explained in Sec. II-A, and the radius of the cell is
set to 0.675 um. As this figure depicts, the electric field will be
focused at an elliptical area after the cell which is in agreement
with the results that we have achieved both in geometrical and
time domain analyses.

By defining a cut-line through the central line of the cell
(focal line), the electric field intensity gain after the cell can
be seen in Fig. 10. It can be seen from this figure that when
the wavelength is smaller than the cell radius the focusing
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Fig. 10. Numerical calculation and FEM simulation of electric field intensity
(V/m) for different wavelengths with a single cell centered at z = 0.

property of the Hb inside the cell is significant and a higher
gain is observed after the cell on the focal line, which agrees
with the geometrical analysis in Sec. III. However, when the
wavelength is equal or bigger than the cell radius, the wave
propagation follows the Mie theory of scattering and most of
the field is forward scattered with a small amplification.

An analytical model in frequency domain for the impact
of a single RBC on propagation of the light is given in
our preliminary work [19]. Considering the same scenario
illustrated in Fig. 1, the electric field at any point outside of the
cell can be written as equation (32) at the top of the next page,
where E, and E.., represent the radiated electromagnetic
field by the antenna and the scattered electric field respectively.
o, and o, are the antenna and cell origins as shown in Fig. 1,
and matrix H,_ ., consists of the translational coefficients.
r is the radial vector from the origin o, to a point in space. Iy
is the input current, [ is the antenna length, and k = w,/pe.
The expressions of matrices M3, . N3 = Cpp, Dy and
row vector 7 are given in [19], and 7 is the T-matrix [29].
Ey,, and Ey, . are the components of the incident field Ej,

in
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in directions ém and zi;m of the spherical coordinates, and
0 and ¢;, denote the direction of the incoming wave. d,_,,
is the distance between the center of the antenna and the
center of the cell. d; is the threshold distance after which the
incoming wave from a point dipole antenna can be regarded as
plane wave. Finally 7" stands for transpose. Interested readers
are encouraged to peruse the details on the derivation of the
analytical model in [19]. Fig. 10 shows the agreement of both
the FEM simulation and the numerical result (obtained from
the analytical model) for four different wavelengths of 450 nm,
500 nm, 800 nm, and 850 nm.

Fig. 11 shows the time domain representation of the electric
field at two points on the focal line before (tx) and after
(rx) the cell. This figure is derived by taking the inverse
Fourier transform of the electric field in the frequency domain
(obtained by the FEM simulations). The electric field in the
time domain has a pure sinusoidal waveform with the time
period of T' = 2 fs which is the result of the single frequency
simulations at f. and can be analytically validated as follows:

_ompA 134 x 450 x 107°
fe £ c 3 x 108

~2fs, (33)

where n,.(w) = 1.34 is the real part of the refractive index of
the media (plasma) at A = 450 nm according to Table I, and
Ao is the wavelength of the electric field in free-space.

As shown in Fig. 11, the received signal preserves its
sinusoidal shape with the same period, 7. It can also be
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Fig. 11. Time domain representation of the Electric field with and without
a RBC at two points before and after the cell with a distance of 2.7 ym and
r = 0.675 um.

—WMIOHCI M3 (04,T)
N%"m(oa) I')

] , when do, o, < dt

(32)
MS

mn (O’ r)

(o, r)} , when do o, > dt

mn

seen that the received signal will be attenuated and delayed
(or equivalently phase shifted) after passing through a certain
distance. It is relevant to note that the received signal after
the RBC has a higher peak intensity than the case without
the cell in between, which verifies the focusing property of
the RBCs. Moreover, there is a time delay At between
the received signal of the two cases (with and without a
RBC in between). This time delay supports the results of
the time domain impulse response which has been explained
in Sec. IV-B and the related delays At and At in Fig. 7.
More specifically, the received signal after the cell (rx) can be
calculated based on the channel impulse response given in (28)
as ‘E:I‘ = h(t) x ‘EO‘, where (%) represents the convolution
operator. Since the source is considered to be a pure infinite
sinusoidal wave (29), the time delay At in Fig. 11 can be
calculated as (see Appendix C):

sin(AT)

——— | + At + AT
cos(AT) + 22 Tattar

At = arctan [ 34

It is relevant to note that if the multi-path received signal is
too weak compared to the main received signal, i.e., yo < 71,
then (34) will be reduced to At = At.

To further verify the results of the geometrical analysis,
FEM simulation has been done with a plane wave source.
Fig. 12 depicts the intensity of the light while propagating
through a single RBC. In (a) the electromagnetic radiation
simulation results for two different sizes of the cell, namely,
small (r = 1.35 um) and large (r = 2.70 um) has been shown.
As it can be seen in this figure, the bigger the size of the
cell the more the light will be focused at a focal area after
the cell. A geometrical simulation which only traces the light
rays is depicted in (b) for the large cell which verifies the
electromagnetic wave simulations in (a). It is worthy of note
that a normal RBC has a diameter around 7 um which is even
bigger than the large cell that we have considered here and
consequently has a higher focusing capability. In our analysis,
we consider a scaled version of the cell model with the exact
same electromagnetic properties which is still able to prove
the focusing capability of the RBC as well as to validate the
analytical model. Smaller cells are considered here in order
to reduce the computational load. Moreover, here we only
consider the Hb layer inside the cell which plays the main role
in focusing the light. It is relevant to note that the proposed
cell model is a generic model that can be applied to any types
of cells with various sizes and electromagnetic properties.

Additionally, by defining a cut-line through the central line
of the cell in the electromagnetic radiation simulation results,
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we can compare the outcome of the geometrical analysis with
the frequency domain simulation results. Fig. 13 shows the
intensity of the light over the focal line for both the small and
large size cells. Once again, here it can be seen the larger cells
are capable to focus the light more than smaller ones. Note
that the analytical model results are shown only on the focal
area between the points f; and f, as in equations (4) and (5)
respectively. However the simulation results are shown for a
longer distance over the focal line. It is observable that the
analytical model is able to accurately calculate the intensity
over the focal line which supports the focusing capability of
the RBCs. It is worth mentioning that outside of the focal
line the intensity of the field follows the usual exponential
loss due to the lossy medium (here plasma) and it can be also
analytically derived by utilizing an exponential loss formula.

Finally, simulation results for the case of multiple cells
positioned randomly inside the blood plasma is shown in
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Fig. 13. Electric field intensity on the focal line, analytical vs simulation
results for a single RBC with two sizes, small (r = 1.35pm) and large
(r = 2.70 um).
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Fig. 14. Electric field propagation pattern after multiple randomly placed
RBCs illuminated with a port antenna (a) with cells (b) without cells.

Fig. 14. It can be seen that while in (a) the light is significantly
amplified at some rays at the end of the path, in (b) the light
intensity stays almost the same for the entire path. This results
show that thanks to the focusing capability of the RBCs, the
signal detection will be easier in presence of the RBCs in
blood. It is relevant to note that in Fig. 14, the areas with
lower EM wave intensity is the effect of the focusing property
of the RBCs. As analyzed in details for the single cell scenario
in Sec. III and depicted in Fig. 12, the rays of the optical wave
will converge on the focal line after the cell, which results in
lower EM wave intensity in the areas around the central line.

VI. CONCLUSIONS

Major progress in the field of nanoelectronics, nanopho-
tonics and wireless communication is enabling the intercon-
nection of nanosensors. Motivated by this results, in this
paper, we investigated the impact of single biological cells
and cell assemblies on the propagation of optical wave. First,
a geometrical approach is taken to trace and aggregate the
path loss and time delay of each of the rays that encounter a
biological cell, and a closed form channel impulse response is
derived. Then, we have developed a comprehensive intra-body
communication channel model in the time domain and have
further investigated the effect of the size and shapes of the cells
on the channel impulse response. Finally, we have presented
an analytical frequency domain channel model and studied the
behavior of randomly positioned cells inside a blood vessel
through extensive simulations. We have validated the proposed
analytical channel model by means of electromagnetic simu-
lations for a RBC inside the blood plasma.

The results show that RBCs perform as optical micro-lenses
in terms of confining the light that is being radiated to them
on a focal line right after the cell. This finding has been
proved in this paper based on thorough analytical models
and also agrees with the recent experimental achievements on
interactions of light and RBCs. Furthermore, we have shown
in the results that different shape and size of the cells due to
various diseases cause small changes in the channel impulse



response. The proposed model will not only guide the develop-
ment of practical communication strategies among intra-body
nanosensors, but also enables new nano-biosensing strategies
able to identify diseases by detecting the slight changes in
the channel impulse response, caused by either the change
in shape of the blood cells or the presence of pathogens.
Compared to ex vivo measurements, which are conducted on
samples extracted from the human body, iWNSNs promise
to engender significant contributions to our understanding of
(sub) cellular processes under normal and diseased conditions
when and where they occur.

APPENDIX A
FOCAL LINE OF A BALL LENS

From the Snell’s law of refraction we have the following in
Fig. 2:
nyosin(f,) = n,1sin(6;),

where n,.;1 and n, o are the real part of the refractive index
of the medium and the cell respectively, and 6; and 6,. are the
incident and refracted angles. The refracted angle inside the
sphere can be derived as follows:

0, = arcsin(msin(&)).

Ty 2

Since sin(f;) = 4=

o

, we can further obtain 6; and 0,. as follows:

0, = arcsin(%a).
Ty 2

0; = arcsin(a),

We are interested in finding f(«) to obtain the focus point
F' (Fig. 2). Following the Sine rule for triangles we have:

refla) 7
sin(Q)  sin(y)
Since ¢ = 260; — 26, and Q2 = 7 — 6;, we have:
_sin(QY)  sin(m —0;)
fle) = sin(y)  sin(20; —20,)"

Using the definitions of 6; and 6,, f(«) can be further
simplified as:

fla) =

«

sin [2 (arcsin(a) — arcsin( Z’"i oz))} .

The lower bound of the function f(«) is at « = 1, therefore:

1
fi=fl)]  =— —
a=l " gin [2(% — arcsin( = ))}
L)
1
2sin(arcsin==1)cos(arcsin—=1)
Nr,2 Nr,2
2
1 _ n7‘,2
2 2 2 2
2”'7‘.1 1— N, 1 Ty 1 nnz 717,’1
Ny 2 Ny 2 '
For the upper bound we have:
0

fu:f(a)

£ )

b

where the above equation is indeterminate. Therefore, to find
the upper limit, we find the limit of f(«) as « approaches
zero, using L' Hopital's rule as follows:

fu = lim f(a)

a—0
nr,1 -1
1 _ 2
Vi-a? 2
1— 72;1 a?

n

2

)

2cos [2 (arcsin(a) — arcsin(

N, 1
™,

n a=0
1 _ Nr -1
N, 2 Ny 2
2 2(”7‘,2 - nr,l) .
APPENDIX B
AGGREGATED FIELD OF THE SECONDARY (FOCUSING)
LIGHT RAYS

To find the light intensity of the secondary (focusing) rays
E{,T(a) with parameter o, we take the integral of each of the
secondary rays EjY(a, ) over all the planes of incidents by
covering 6 from zero to 27, where 6 is the angle between the
plane of incident and the x axis in spherical coordinates:

27
Bl (a) = / By (o, 0)do,

where E'I{f(a) is the total received field from all the secondary
rays that are focusing at the focal point with the distance 7 -
f(e) from the center of the cell, and E}*¥(, §) is the intensity
of a single secondary ray at the aforementioned point which
is coming through the plane of incident that forms the angle
6 with the axis x (Fig. 4), and is given by:

bound

Ey(@,0) = LabsLoca (Llhabon + £L3maEos )

where Eop and EOS are the p- and s-polarized parts of the
incoming ray Ey as shown in Fig. 4, and are given by:
Eop = ’E%’ cos(8)ap, Eys = ‘EB’ sin(0)as,
where a,, and a, are the unit vectors in the direction of Eop
and Fys and are given by:
ap = cos(0)a, + sin(0)ay,
as = sin(8)ay — cos(8)a,.

By substituting the definitions of E, and Eo, in E;*(a, ),
the total received field E){;r(a) can be further written as the
integral at the top of next page. It can be easily observed
that the answer of the integral is equal to zero in the y and
z directions. Hence the aggregated field coming from the
secondary rays is further simplified to:

BIr(a) = W\EO\ (LIPeos(v) + LIy



27
E{,f(a) = ‘EO‘ (ﬁfr’p/o cos> (0)cos(v)ag + sin(B)cos(B)cos(v)ay + cos(8)sin()a.do

2m
+£f’°’s/ sin?(0)é, — sin(@)cos(@)%d@).
0

APPENDIX C

TIME DELAY (PHASE SHIFT) OF TWO SINUSOIDAL SIGNALS

Consider the general case of two sinusoidal signals x4 (t) =
sin(t) and z9(t) = asin(t — a) + bsin(t — 3). The delay,
Atg, between x1(t) and x2(t) is the time difference between
the peak of the two signals or equivalently the rising zero
crossing point, i.e., 1(0) = 0 and x2(Atg) = 0. Therefore
Aty can be calculated as follows:

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

asin(Atg — «) + bsin(Atg — 3) =0,

= Aty = arctan | — sin(f — @) -+ 6
a

cos(f —a) +
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